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A NUMERICAL SCHEME BASED ON 
MEAN VALUE SOLUTIONS FOR 

THE HELMHOLTZ EQUATION 
ON TRIANGULAR GRIDS 

M. G. ANDRADE AND J. B. R. DO VAL 

ABSTRACT. A numerical treatment for the Dirichlet boundary value problem 
on regular triangular grids for homogeneous Helmholtz equations is presented, 
which also applies to the convection-diffusion problems. The main charac- 
teristic of the method is that an accuracy estimate is provided in analytidal 
form with a better evaluation than that obtained with the usual finite differ- 
ence method. Besides, this classical method can be seen as a truncated series 
approximation to the proposed method. The method is developed from the 
analytical solutions for the Dirichlet problem on a ball together with an error 
evaluation of an integral on the corresponding circle, yielding 0(h4) accuracy. 
Some numerical examples are discussed and the results are compared with 
other methods, with a consistent advantage to the solution obtained here. 

1. INTRODUCTION 

In this paper we consider numerical solutions on triangular mesh grids for the 
Helmholtz equation u - A2u = 0, with the use of a method that we should call 
henceforth the Mean Value Scheme (MVS). The method is based on the same 
central ideas of the method in [14] for square mesh grids; here, it is adapted for 
the triangular mesh grids, with an improvement in the accuracy. The point of view 
adopted is that of an approximation for the integral on the circle, associated to the 
solution for the Helmholtz equation on the interior of this special domain, instead 
of the usual discretization of the differential operator. This type of analytical result 
can be seen as an extension to the Helmholtz equation, of the mean value theorem 
for harmonic functions, which explain the allusion in the given name. The proposed 
method can also be applied in a straightforward manner to the convection-diffusion 
equations -Au?ao- Vu?+qu = 0, with a a constant vector in R2 and q a nonnegative 
scalar. 

In the present setting, we consider circles that are centered on each mesh point 
and contain the six neighboring points in the triangular mesh grid; a partial covering 
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for the domain composed of an intertwined set of balls is defined by this construc- 
tion. The six points on the circle provide an approximation to a line integral on the 
circle associated with the "mean value" calculus for the Helmholtz equation. An 
improvement in the precision is obtained here, when compared with the evaluation 
presented in [14], since the number of points employed increased from four to six. 

The standard finite difference method for Helmholtz equations with triangular 
mesh grids can be traced from [10], and we shall refer to it as the Finite Difference 
Scheme (FDS). In an analytical comparison presented in section 3, it is shown 
that the FDS in fact stands as an approximation to the MVS. This conclusion is 
straightforward since the modified Bessel function of zero order, which arises in 
the proposed method, possesses the first three terms in its series representation 
identical to the three terms appearing in the standard FDS. The precision error for 
the MVS and the FDS is of order 0(h4) (h is the mesh grid step size), however, we 
can show that a tighter upper bound for the precision error holds for the MVS. 

The precision error of the proposed method is compared numerically with other 
difference schemes: the Single Cell High Order Scheme (SCHOS), defined on a 
single square cell of size 2h over a 9-point stencil, according to [11]; the Discrete 
Weighted Mean Approximation (DWMA), developed in [4] for a specific class of 
problems and the Quadratic Influence Scheme (QIS), defined for a 9-point stencil, 
as in [13]. Notice that the MVS is a 7-point scheme which naturally yields simpler 
matrices than that obtained in a 9-point scheme, thus requiring less effort. The 
largest precision that can be attained in regular grids with a 9-point scheme for 
the Helmholtz equation is 0(h6), see [11] and [1], which lead us to believe that the 
precision error of order 0(h4) is probably the precision error limit for the equation 
studied in triangular mesh grids. In [1], the authors concentrate on finite difference 
schemes for the Helmholtz equation, and they remark that they can see no natural 
way to derive any equally good 9-point stencil from variational principles, which 
somehow explains the permanence of finite difference methods even with a plethora 
of finite element methods. The comparisons of the MVS with the three above- 
mentioned methods are presented in section 6 for some examples studied in [8], [9] 
and [4] with a consistent advantage to the MVS. 

It is mentioned in different contexts that when the product A x h is large the 
methods generally provide poor results, e.g. [8], [9], [4], [13]. We also verify here 
this general behavior for the FDS and the MVS in some numerical experiments, 
but the results show that the MVS presents a good precision in a range of A x h 
that is not attained by any of the methods known by the authors, see section 6. 
This suggests a wide application of the MVS to the so-called convection-diffusion 
problem. 

The paper is organized as follows. In section 2 the preliminary definitions are 
given and in section 3 the main result (Theorem 3.1 and Corollary 3.1) is presented. 
An analytical comparison with the FDS is developed and the advantage of the MVS 
method is inferred from a favorable comparison between the precision error upper 
bound for both methods. In section 4 the arguments in preparation for the proofs 
are devised: the covering of the given domain with a set of two-dimensional balls, 
and the error evaluation for the numerical approximation for the integral arising 
from the mean value theorem for the Helmholtz equation. In Section 5 the proof of 
the main results is developed from the previous results and from the construction 
of the matrices involved. Section 6 presents numerical examples and comparisons 
that underline the improvement in the accuracy obtained by the MVS method. 
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Analytical solutions are employed for the comparisons among the MVS, the FDS, 
the SCHOS and the DWMA methods, and the maximum relative and absolute 
errors are exhibited. Some numerical estimates for the order of the discretization 
errors are also presented. 

2. PROBLEM FORMULATION AND BASIC DEFINITIONS 

Let Q be an open and limited subset of the Euclidean two-dimensional space, 
with boundary denoted by &Q and Q = QU&Q, the closure of Q. The pair (x, y) will 
denote a point in Q. Let u: Q 4 RE be a real function defined on Q, and denote by 
Co(Q) (or Co0(QQ)) the class of bounded and continuous functions on Q (or &Q) and 
by Ck (Q) the class of functions that is continuous and possesses continuous partial 
derivatives in Q of order k. Let us consider a function u(x, y) E C6(Q) n co(Q) 
satisfying the following standard Dirichlet problem: 

Problem (Z) : Au(x, y) - A 2U(X, y) = 0, (X, y) E Q; 
u {(X, Y) - IF(X, Y) (X, y) E 0Q. 

We assume that the basic conditions for the existence of a unique solution is 
satisfied, e.g., [5]. 

In order to solve the problem numerically for a general domain Q, it is necessary 
to introduce a discrete grid on Q and evaluate u approximately at each point (node). 
We adopt the uniform triangular grid as follows. 

Definition 2.1. Let Gh denote a uniform triangular grid with step h covering the 
region Q such that for some N and M 

Gh:{(Xi, y) E Q, i = 0, 1, 2, ,N,j = 0, 1, 2,, M 

xi = xo + ih + ph cos(7r/3), yj = yo + jh sin(7r/3)}, 

where p := (jmod 2) - 1. A node in this grid is denoted by zij (Xi,I yj), and we 
can associate to any function q5 Q |-4 R a discrete function q: Sh 1I R called 
grid function, such that qi,j = q(Zi,j). A node zi,j of Gh is internal if the distance 
from zij to &Q is larger than hv'3/2 in the y-coordinate direction and larger than 
h in the x-coordinate direction. The total number of interior points is denoted by 
NoMo with No = N-l and Mo = M-1. 

For v E R' and A E RIxn, vi and aij denote respectively a generic element 
of v and A. We adopt in what follows the usual sup norm for v and A [6]. For a 
function u E Ck(Q) let Dk denote an upper bound for the k-th order differentials 
of u, namely 

(2.1) Dk =max{sup{ &ku(X y) :(xy) EQ} 0<j<k}< 

Also, we denote by Io: R l-- R+ the modified Bessel function of zero order, repre- 
sented by the series 

oo 2k 
Io(x) = L 22k(k!)2; X E I 
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3. MAIN RESULTS 

Theorem 3.1. Let u(x, y) E C6(Q), be the solution for the boundary value problem 
Z, and let Gh be the triangular grid, given in Definition 2. 1, and ui,j be the cor- 
respondent grid function. Let {Ui,j} be a grid function that satisfies the following 
difference equation for i = 0, 1, 2, .. , No j = 0, 1, 2, ... , Mo 

(3.1) 

Uij = 61 (Ah) (Ui_1J1 +? U+, i-2,j + Ui+2,j + Ui-j+ + Ui+l,j+l). 

It follows that 

(3.2) flu - Ull1o < I (Ah) h1 6D! + O(h) 

Corollary 3.1. Let u(x, y) E C6(Q) be the solution for the boundary value problem 
Z, and Gh be the triangular grid, according to Definition 2. 1. If U = {Ui,j} is a 
grid function satisfying (3.1), then 

(3.3) llu - Ullo = 0(h4). 

Remark 3.1. The difference equation in Theorem 1 can be compared to the stan- 
dard difference equation obtained for the Helmholtz equation when the grid Gh is 
adopted, e.g. [10]. Using the Taylor series, equation (3.1) has a standard similar 
counterpart given by 

(3.4) 

Uij = 6T (Ah) (Ui1-1'- + Ui+l'i1, + Ui-2j + Ui+2,j + Ui-.1,+1 + Ui+1,i+1), 

where 

TI(Ah) = I + (Ah) 2 ( 6Ah)4 
4 64 

The truncation error for (3.4) is obtained by direct development of the Taylor series 
for u(x, y) in a point in Gh, and by substituting the basic relation /Au = A2u and 
A2U = A(AU) = A4u into the sum of the six series involving the six neighboring 
points. Denoting by T{ui,jj} the truncation error, we obtain 

T{Ui,j} = Ui-1,j-1 + Ui+l,j-l + Ui-2,j + ui+2,j + ui-,j+ + Ui+l,j+l - 6T1(Ah)ui,j 

and the analysis in [10] yields the following bound, which is justified for a function 
u E C6(Q): 

6h6 ( 6 U._ _6___ 06Ui. a6U _ 

{Ui,j} 316 x 6! ( + 45 3 
+ 135 2 '4 + 27 ) + 0(h7) 

(3 5) < 6! D6 +iO(7). 
-6! 

The precision error can now be evaluated using the following upper bound devel- 
oped in this work, see Lemma 3.1 in the sequel 
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(3.6) liu - Ulloo- ? I 
11{ 11 -6T1 (Ah) -6 

From (3.5), we now have that 

(3.7) flu - UHloC -6T1 (Ah) -6 (6! D6 + O(h8)). 

Lemma 3.1. Suppose that the finite difference schemes in (3.1) and (3.4) yield, 
respectively, the following matrix representation: 

AIOU-b, AT1U = b 

with b E IRNOMO and AIO and AT1 of dimension NOMo x NOMo. Then 

IIAiovoK > 6(Io(Ah) - 1) 1jvlJ0, J|AT1vIIOQ > 6(TI(Ah) - 1) lIvIl, Vv E RNoMO 

The proof of Lemma 3.1 is postponed to section 5. 

Remark 3.2. The basic distinction between expressions (3.1) and (3.4) is the mod- 
ified Bessel function in the denominator in (3.1), and the polynomial T1(Ah) ap- 
pearing in the denominator in (3.4). Distinct evaluations for the precision error are 
obtained by comparing (3.2) and (3.7), with an advantage for the MVS method, 
presented in Theorem 3.1. This can be verified first from a factor of 15/6 in the 
right-hand side of (3.7); also notice that the denominator of (3.2) presents the in- 
finite series Jo(Ah) in place of the polynomial T1 (Ah) arising in the standard finite 
difference method. In addition, the function T1 (Ah) corresponds to the first three 
terms of the series represented by 1o(Ah) which clearly shows the consistency of the 
two schemes, and demonstrates that the Taylor series development represents an 
approximation for the method proposed here. The ratio between the two coefficients 
appearing in (3.2) and (3.7) yields the following expression: 

R.-r ~15 K1 _15 0 + 
1 

h)2k A 

6T,(Ah)- 6 lo (Ah) - 1 6 L T, (Ah)- I Vk= 22k(k!) 2| 

Fig. 1 shows a plot for ratio R, picturing the improvement in the error bound 
associated with the proposed method for different values of parameter A and grid 
size h. The justification behind the result in Theorem 3.1 relies on the solution 
of the Dirichlet problem defined locally on an intertwined set of balls covering the 
domain. This procedure leads to the solution of problem Z as assured by the 
Alternating Method of Schwarz, e.g. [2, chap. VII], [12], applied to the set of balls. 
The Dirichlet problem for the Helmholtz equation defined on the interior of one ball 
possesses an analytical form, see Lemma 4.1. A numerical approximation to the 
line integral on the circle is proposed and the numerical error is evaluated. These 
steps are developed in the next section. With these elements, the adequate scenario 
for the proof of Theorem 3.1 is settled, and section 5 is devoted to the proof of the 
main results. 
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FIGURE 1. A plot for 6 1v(Ah)-1 

4. COVERING Q WITH BALLS AND NUMERICAL EVALUATION IN A BALL 

Definition 4.1. Let Bi = Bhh(Zi), i = 1,2, ,n, be open balls with radius h 
centered at points zi = (x, y) E Q, such that zi E Gh and Bi C Q Vi = 1,2, , n. 
Moreover, for any index i and j with i $& j: 

Bi n Bj 0 X> zi E fIlj and zj E 9II. 

Definition 4.1 provides a partial covering for Q denoted by W such that W = 

Ui Bi, as shown in Fig. 2. We suppose that the function ' defined on DQ for 
problem E can be extended to oW (the boundary for W) in a suitable form, as it 
is usually done when a regular grid is introduced in a given domain. This extension 
can be made arbitrarily precise if one is prepared to decrease the step h of Gh (the 
radius h of Bh(.)). With these considerations, we can replace the original problem 
E by a similar boundary value problem involving the domain W: 

Problem (Ew): { A8(x, y)_A2u(x, y) = 0, (x, y) E W, 

uP(x, y) = em )(x, y), (x,Iy) E aw. 

Now, let us depart from the original problem for a moment, and take advantage 
of the simple geometry of the Dirichlet problem defined in the interior of a ball. We 
first quote a result that establishes an analytical solution for the Dirichlet problem 
for the Helmholtz equation in a ball, and later in this section we announce and 
prove a result on the numerical evaluation for an integral on a circle, associated 
with the solution of the Helmholtz equation at a ball. 

Lemma 4.1 [7]. Let B = Bh(Z) be a ball with finite radius h, centered at a point 
z E Q, and let oII be the correspondent circle or the boundary for B. Let T(x, y) be 
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y G 

FIGURE 2. The regular covering W for Q 

such that on the circle DIB 0 F--> T(h, 0) E LP, for some 1 < p < oo, where LP is 
the class of 2ir-periodic functions with the norm 

IJf (0)P d01 

Consider the following boundary value problem: 

(4.1) /fAu(x, y) - A2u(x, y) = 0, (x,iy) E B, 

lu(x, Iy) = @,(x) y), (x, y) E aB. 

The solution for (4.1) is given by: 

(4.2) u(r, 0) - 2 Io (Ah) h(an cos nf + bn sin n), O < r < hi 

where {an}, n = 0, 1, 2,..., and {bn}, n = 1, 2,. .., denote the Fourier coefficients 
of the function T'. 

For our purposes, the interest is in the evaluation of u at the center point z, 
thus r = 0 in (4.2). Since In(0) = 0 Vn 7& 0, and Io(O) = 1, it follows that we can 
express 

27r 

(4.3) ui=2i(Ah) Ju(h 0)do 

by applying the result in Lemma 4.1 to a ball Bh(Z) with center at a point z = 

(xi, yj) belonging to the grid Gh. Thus, the grid function ujj can be evaluated at 
point z, provided that the solution for (E) on the circle DIB is know. Recognizing 
that the value of u(x, y) is only known in some (six) points on the circle 09B, we 
ought to use these point values for solving the integral in (4.3) numerically. It is 
possible to make an evaluation for the integral in (4.3) using the trapezoidal method 
for points regularly spaced as obtained with Gh. It attains great precision thanks 
to the fact that 0 F-> u(h, 0) is a periodical function [3]. The expression in (4.3) can 
be seen as an extension of the mean value theorem for the Helmholtz equation [2, 
chap. VII]. 
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Theorem 4.1. Let u be a function of class C6 in a neighborhood of the circle 
DBh (z). The following evaluation holds. 

(4.4) iJu(h,o)do- u(h ) < 6 6 + O(h7). 

Proof. For the evaluation in (4.4), we pick up a point z = (xi, yi) E Q, that may 
or may not belong to Gh. Let us denote by (xi?1, Yj?i) := (xi ? h/2, yj + hv'3/2) 
and (xi?2, yj) := (xi ?4 h, yj) six equally spaced neighboring points at a distance h 
from the point (xi, yj). We also denote by u. and ui?1,j?l or Ui+2,j the value of 
function u at point z and at the six neighboring points, respectively, and we use 
the same notation for the derivatives. Expanding the representation for u(x, y) by 
using the first (n - I)th derivatives, it follows that 

au~ 09? 1(292U a2U, a2U 
u (xi +a, yj+3 U;'+a Z+f3 +-oa Lz+ 2c4 .+3 2 

+- 
D9xi Dyi 2!( axD + x%Dy ay? 

+ { > { V DD;jz + ( n-lI)0 Dn- z ' 

+ (n-) /nf+ an2D aXn D2Z}R 

where Rn stands for the remainder of this representation. Denoting 

( 9 9 D\ 1 n n Duanr~ ~1 ~ uz 
O-_ +/ = +1 a 3Xp ly 

+ n n 9 )n=1 {Uz+ /n an-y 
n-1 aX,yn-1 

u 
inU 

we can write equivalently 

(4.5) u(xi+ca,yji+/3)=uZ+Z(c E+l u ( +Rn 

In the present situation n = 7 and R7 0 (h7), and adopting oa = +h and 3 = 0, 
or oa = h/2 and 3 = ?hV3/2, it follows that (xi + oa, yj + /) represents the six 
equally spaced neighboring points of (xi, yj) at a distance h. For sake of notational 
simplicity, let E Ub denote the sum of u at the six neighboring points to point z. 
We have with a proper reference for the angle parameter 0 that 

(4.6) SUb = u (h, 3) 

and from (4.5) 

(4.7) Zztb= 6Uz + 2! AUIZ + 3h /A2U?Z + T{uz . 
2! L132 Z1Tjtj 

The truncation error Tf {Uz} can be found in [10] to be 

T{z} 16x6! 33 x6 + 45 X4a 2 + 135 , +27%) +0(h7); 
16 x 6!D ay~ x? Dy4 9 
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using the definition of D6 in (2.1), we can write 

15h6 
(4.8) ITf{Uz} < 6! D6 + 0(h 7). 

Now, we concentrate on the numerical solution of (4.3). Employing the trape- 
zoidal method for solving the integral, one can write 

27r6 

(4.9) ujf (h,O)dO = 6Eu (h, ) +rt{tu}, 

0 

where Tt{ u} stands for the approximation error incurred by the trapezoidal method. 
We should also employ (4.6) to write (4.3) as: 

6 Io(Ah)u, =E Ub + 6 Tt {u}. 

Now, using the expression for E ub in (4.7) and substituting in the relation above, 
we have that 

6rt{u}-=6Io(Ah)uz-6 u + h2/X+ h4/X2u 

(33 z aU,aU a6U\ 0(7). 
-16 x6(33 6+ 45 2+ 135 a +27 6 +O(h 

One can use the fact that Au - A2u and A2u = M4u and the series representation 
for Io(Ah) to write 

6Tt{u}u =6h,A3 - (33 
a6 

+45 
a 

4a + 135 a6UZ +27 a6U 

26(3!) 2 -16 x6! Mxa x ?y ax?jayj 

+ 0(h7); 

also, introducing the form of A3u, we finally have that 

6Tt{u}l I - -h6 x _ 15 a6Uz + 15 2 4aU + a6Uz + 0(h7); 
16 x6! ax x &yj2 Dx2a ay y / 

using the notation in (2.1), 

h6D6 7 
Tt{u}ull 6! + 0(h7) 

and the result is therefore proven. 

5. PROOF OF THEOREM 3.1 AND COROLLARY 

Let us consider the problem E or, alternatively, Yw with no loss, as mentioned 
in section 4. For the proof we now pick up a point z = (xi, yj) E Q that belongs 
to Gh and is an interior point with respect to aW, and consider a ball Bh (Z). We 
denote by (xi?1,yyj?) := (xi + h/2, yj ? hV3/2) and (Xi?2,Yj) := (xi + h,yj) the 
six points on the circle aBh (Z) that are also points of Gh at a distance h from the 
point (xi, yj). We also denote by u., Ui?2,j and ui?1,j?1 the value of function u 
at point z and at the six neighboring points, respectively, and we use the same 
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notation for the derivatives. Using polar coordinates with an appropriate reference 
for the angular variable, we can also identify 

(5.1) u(h, k') fork = 1,2,3,4,5,6. 

with each one of the neighboring points (xi?1, yj?i) and (xi?2, yj). Using (4.3) and 
the trapezoidal rule for the numerical evaluation of the integral, we can write 

2ir 6 

(5.2) Io(Ah)ui,; = + uJu(h,O)dO = 6 (h, u h ) +rt{U}, 

0k= 

where, as in (4.9), rt{u} stands for the approximation error incurred by the trape- 
zoidal rule, with an error evaluation given by Theorem 4.1. Thus, 

L6 -k ? wtu} 6h6 D6 
7. (5.3) 16Io(Ah)ui,j - (h, k h ) < 16Tt_ujj < 6! +0(h) 

Let us denote by U,j the grid function defined on Gh that is the approximation 
for function ui,j obtained by the proposed method. It is such that U,j = ui,j at 
each point of the boundary OW and at interior points U,j satisfies the equation in 
Theorem 3.1, namely 

(5.4) 6Io(Ah)Ui,j = Ui-2,j + Ui+2,j + Ui+l,j-1 + Ui+l,j+l + Ui_l,j-1 + Ui_l,j+l. 

Similarly, using (5.1) and (5.2), we can write a difference equation for the grid 
function ui,j as follows: 

(5.5) 6Io (Ah)ui,j = 'Ui-2,j + Ui+2,j+Ui+l,j-1 

+ ui+i,j+l + ui-,,j-l + ui-l,j+l + 6&t{u}- 

Following this definition, we denote by u and U the vectors of appropriate di- 
mension, each of them containing the values uij and U,j respectively, at each point 
of Gh whenever (xi, yj) is also an interior point of W. Suppose that one can find 
No . MO interior points in Gh, or equivalently, the same number of balls centered in 
the interior points of W in Gh. We write for a proper ordering of these points: 

U :=[U1,1i, ... ,UNo1;U12,2 . ,U No,2;.. U1,Mo ,UNO,MOI, 

U :=[U1,1, . . . , UNOj,; U1,2,... , UNO,2; . U1,MO, .. , UNO,MO]T. 

Also, let us define the error vector made up of the corresponding terms in (5.5) as: 

tt{U} := ['T1,1, ***vTNo,1; T1,2i .. iTNo,2; ..; 'Tl,MO, .. TNo,Mo] 

From (5.4) and (5.5) we can form the following linear system of equations: 

(5.6) Au = b + 6 tt{u}, 

(5.7) AU = b, 

where b is a vector forr the elements ui,j associated to points at the boundary 
OW whenever they are involved in the right-hand side of (5.4) and (5.5). Otherwise, 
when no boundary point is involved, the correspondent element of b is null. 
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When the domain is sufficiently regular, the matrix A will have the following 
structure, after a proper definition and ordering: 

B1 -JNO 0 0 0 

-JNO B2 -JT ? 0 0 
O -JNO B3 -JNO ... 0 

(5.8) A 

O *... 0 * NO BMo-1 JT NT No 
0 * 0 0 -JNO BMO 

with dimension NOMO x NoMo. Matrices Bi are defined by: 

(5.9) Bi = 6 Io(Ah) ENo-CNo for i = 1, 2, , MO, 

where ENO is the identity matrix with dimension No x No. The matrices JNO and 
CNO are defined by 

11 0...0 0 1 0 ...0 
0 1 1 *-- 0 1 0 1 *.. 0 

(5.10) JNO = . . ,CNO 

0*- 0 1 0i* 0 1 

L0 
0 0 1- NO xNO O O 1 O NO xNO 

Before the proof of Theorem 3.1 we pause to prove the result in Lemma 3.1. 

Proof of Lemma 3.1. Notice first that the standard finite difference method applied 
to the same triangular mesh grid would provide similar matrices as in (5.8)-(5.10), 
with the exception that the sub-matrices Bi would have the following form: 

Bi = 6T1(Ah)fNo-0CNo for i = 1,2, ,M0. 

In addition, for a matrix A = {ajj} generated by any of the two methods, one can 
verify that 

aij =0 or aij = -1, for i#+ j, 

moreover, 

-6 < E aij < 0, for any i = 0, 1,.. ,NoMo. 
PbAi 

Notice that this structure of matrix AIO or AT1 is invariant, even if the domain is 
not strictly rectangular or triangular. With E = 1o or E = T1, the norm definition 
yields 

IIAEvloo= sup {16E(Ah) vi-E aij vj v 
i= 1X... ,No Mo j7Ai 

and supposing that llvlo = vio for some io, we evaluate 

{[AE vlloo >1 6Y(ih) vio - aij vj I 
j$io 

(5.11) >6(E (Ah) - )vio 
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Similarly, let us suppose that jjvjjK, = -vi0 for some io, and evaluate 

[[As v 1o ? - 6Z(Ah) vio + E aij vj 
j#Aio 

(5.12) > - 6(i(Ah)-1) vio; 

from (5.11) and (5.12) the result in Lemma 3.1 is proven. D 

Proof of Theorem 3.1. The proof of Theorem 3.1 now follows in a straightforward 
manner by subtracting (5.7) from (5.6): 

(5.13) A(u - U) = 6,t{u} 

and taking the identity 

JJA(u- U)Kloo = 611Ttfullloo. 

The result follows from Lemma 3.1. D 

Proof of Corollary 3.1. The proof is immediate from Theorem 3.1, since it is enough 
to verify that 

o (Ah) -1 = E( )2 = (h2); 
S 22k~(k!)2 

thus, in view of (3.2) it follows that 

Hiu - UH0 ? o(h2) < I1t{u}JlOo = O(h4), 

proving the result. D 

6. NUMERICAL EXPERIMENTS 

The examples in this section are drawn from convection-diffusion problems of 
the form Au + ce Vu = 0. They are transformed to the standard Helmholtz form 
Aw - A2w = 0 with the simple transformation 

(6.1) w = uexp( ce -p), with p =(x,y)Tand A 1 cT 
2 ~~~~~~~~4 

The comparisons however are presented in terms of the original function u. 

Test Problem 6.1. Consider the boundary value problem with dominated con- 
vection term 

+ + (0X + ?=o, 0 <x, y<l; 
(6.2) u(x,0) = 0, u(x,1)-0, 0 < x < 1; 

lu(O,y)=siniry, u(1,y)=2siniry, O<y<l. 

The Problem 6.1 was specially considered by Gartland in [4], in which a specific dif- 
ference method for the five-point rectangular mesh grids called Discrete Weighted 
Mean Approximation (DWMA), was proposed involving the modified Bessel func- 
tion. This problem is also studied by Gupta et al. in [8] using the SCHOS method, 
with advantage to the former method. Using the variable transformation in (6.1), 
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the equation (6.2) is posed in the Helmholtz canonical form; the exact solution of 
(6.2) is given by 

eAx [ 2 e-[ Asinh ox + sinh o(1 -x) ] sin ry 52 2 + A2 
sinh aI 

with A = 1/2E. For comparison purposes, we present in Table 1 the evaluations for 
the relative error obtained from the numerical experiments carried out for the FDS 
and the MVS on triangular mesh grids, together with the results using the SCHOS 
presented in [8]. Table 1 shows that the accuracy is clearly in favor of the MVS. 

TABLE 1. Test Problem 1. 
Maximum relative error h = 1/32 

A FDS SCHO [8] MVS 
5 0.1028(-5)* 0.6011(-4) 0.8634(-6) 

10 0.2651(-4) 0.1399(-3) 0.7184(-5) 
20 0.9842(-3) 0.1511(-2) 0.1283(-3) 
50 0.1040 0.3517(-1) 0.9542(-2) 
*0.1028(-5) = 0.1028 x l0-5 

The maximum absolute error for different values of mesh grid size h for the MVS 
is presented in Table 2, with numerical estimates for the precision error order, by 
considering two successive error evaluations. 

TABLE 2. Test Problem 1 with MVS. 
Maximum absolute error and 

the estimated error order 

A h = 1/8 Order h = 1/16 Order h = 1/32 
5 0.2961(-3) 3.85 0.2055(-4) 3.57 0.1725(-5) 

10 0.2692(-2) 3.76 0.1983(-3) 3.79 0.1436(-4) 
20 0.3922(-1) 3.46 0.3557(-2) 3.79 0.2563(-3) 
50 1.1056 2.51 0.1945 3.35 0.1907(-1) 

We observed from the experiments with the FDS and the MVS that when Ah 2 
(A = 30, h = 1/16) the FDS yields poor results with relative errors larger than 10%, 
whereas the MVS presents an error of 1.1%. The error level about 10% (9.8%) is 
only attained by the MVS when A = 50 and h = 1/16. When the product Ah > 2 
is adopted (A = 40, h = 1/16 or A = 75, h = 1/32) the error increases to values as 
large as 49%, indicating that the FDS method is incapable of handling problems 
when Ah > 2, whereas the MVS yields an error of 3.8% and 6.11% for A = 40, 
h = 1/16 and A = 75, h = 1/32, respectively. Thus, trying with larger values for 
the product Ah with the MVS, numerical experiments show that large errors will 
only appear when Ah > 4 (A = 64, h = 1/16 or A = 128, h = 1/32), with relative 
error values as large as 27%. 
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In Table 3, a comparison among the FDS, SCHOS, DWMA and the MVS is 
presented by means of the maximum absolute error and numerical estimates for 
the precision error order, using successive error evaluations. When A = 50 the 
FDS method yields large errors; we omit the results and use instead the results 
for the maximum absolute error presented in [9] for the DWMA and SCHOS for 
comparison purposes. 

TABLE 3. Test Problem 6.1 
Compared maximum absolute 

error and estimated error order 

A h-1 FDS Order SCHOS[8] Order MVS 
20 8 0.3289 0.1256 0.3922(-1) 

16 0.2739(-1) 3.58 0.2009(-1) 2.65 0.3557(-2) 3.46 
32 0.1967(-2) 3.79 0.1712(-2) 3.55 0.2563(-3) 3.79 

A h-1 DWMA[9] Order SCHOS[9] Order MVS Order 
50 8 0.3685(-1) 0.4249 1.1056 

16 0.5812(-1) 0.1670 1.35 0.1945 2.51 
32 0.4993(-1) 0.22 0.3365(-1) 2.31 0.1907(-1) 3.35 

One may observe from Table 3 that the solution with the DWMA is more precise 
than that yielded by the MVS when the mesh is crude. When the grid is refined 
the solution with the MVS shows a fast convergence of O(h3 35). 

Test Problem 6.2 (Borrowed from [8] and [13]). Consider the boundary value 
problem 

2U 2 aut au 
J 2 + 02 = PcosOa + PsinO, O < x, y < 1; OX2 OY2 Ox ay' 

(6.3) u(x, 0) = 0, u(x, 1) = 0, 0 < x <1 
u(O, y) = 4y(1 - y), u(1, y) = O, O < y <. 

Problem 6.2 represents the convection of temperature or concentration in a fluid 
moving with a uniform velocity at an angle 0 with respect to the x-axis. Using the 
variable transformation in (6.1) with a = (-PcosO -Psin O)T, equation (6.3) is 
posed in the Helmholtz canonical form. The exact solution of (6.3) is given by [8] 

00 

u(x, y) - eP(x 
cos O+y sin 0)/2 E A, sinh [u,(I - x)] sin(nrry) 

n=1 

where 

1 

8 tf - )-PiOt2 2 2 p sn _ t(1 1-t) e(PsinO)t sin (n7rt) dt, oJ = n ir + p2/4. 
0 
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In Table 4 we transcribe the maximum absolute error presented in [8] for the 
SCHOS method and compare them with the numerical results obtained with the 
FDS and the MVS method for P = 40, h = 1/8, 1/16, 1/32 and 0 = 0?, ir/8, ir/4. 
Notice the consistent good behavior of the MVS method, presenting an error that 
is 3.7 smaller in its minimum and 17 times smaller in its best comparison with the 
FDS method; the same comparison with the SCHOS method ranges from 1.6 to 
7.2 times smaller. Notice that the performance of the MVS is not affected by the 
variation of 0, as it may occur with other methods, see [13]. 

TABLE 4. Test Problem 2. 
Compared maximum absolute error 
and estimated error order (P = 40) 

0 h-1 FDS Order SCHOS[8] Order MVS Order 
00 8 0.3356 0.8280(-1) 0.3912(-1) 

16 0.2796(-1) 3.58 0.1323(-1) 2.65 0.3554(-2) 3.46 
32 0.2003(-2) 3.80 0.1123(-2) 3.55 0.2549(-3) 3.80 

ir/8 8 0.2993 0.6931(-1) 0.1770(-1) 
16 0.2048(-1) 3.87 0.1019(-1) 2.77 0.1630(-2) 3.44 
32 0.1546(-2) 3.72 0.8128(-3) 3.64 0.1124(-3) 3.86 

ir/4 84 0.1214 0.4932(-1) 0.2321(-1) 
16 0.1110(-1) 3.45 0.5977(-2) 3.04 0.2889(-2) 3.00 
32 0.9515(-3) 3.54 0.4066(-3) 3.88 0.2551(-3) 3.50 

In a final comparison, we employ the numerical results obtained with the FDS 
and the MVS for the test Problem 6.2 with P = 80 and 0 = ir/8. In Fig. 3 (a) 
the exact solution is presented, in Fig. 3 (b) the solution obtained by the MVS 
is pictured, in Figs. 3 (c) and 3 (d) the error values for the MVS and the FDS 
are displayed, respectively. The maximum absolute error in the FDS is 0.5362(-1) 
and for the MVS it reaches 0.3759(-2), thus more than ten times smaller than the 
error yielded by the former. The same problem was also solved in [13] using a 
9-point scheme called QIS. For the same values of P and h, the QIS seems to be 
more precise when the grid is crude, although both methods MVS and QIS yield 
comparable error values when the grid is refined. 



492 M. G. ANDRADE AND J. B. R. DO VAL 

(a) 

(b) 

e(x,y) 

0.05 

0.02~~~~~~~~~~~~. 

0. 0 

(C) 

e (x, y) 

0.007_ 

0.006_ 

0 5 J 

0.0 

(d) 

FIGURE 3. Numerical solutions for test Problem 6.2: (a) - Exact 
solution; (b) - MVS solution; (c) - Error yielded by the MVS; (d) 
- Error yielded by the EDS 
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7. CONCLUDING REMARKS 

In each of the numerical examples that were implemented by the authors, the 
MVS provides solutions that are consistently better than those obtained by other 
methods with respect to the maximum relative and maximum absolute error, in- 
cluding methods with stencils involving more than 7 points. The exception to this 
rule was only encountered in the comparison with the QIS method for some param- 
eter values in the test Problem 6.2. It is important to mention that the comparison 
with the FDS has always yielded better results in the examples than those antici- 
pated by the analysis in section 3, in the comparison of the ratio between the error 
upper bounds for both methods, as pictured in Fig. 1. 
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